3.2289 \(\int \sqrt {1-2 x} (2+3 x) (3+5 x)^{5/2} \, dx\)

Optimal. Leaf size=138 \[ -\frac {3}{50} (1-2 x)^{3/2} (5 x+3)^{7/2}-\frac {251}{800} (1-2 x)^{3/2} (5 x+3)^{5/2}-\frac {2761 (1-2 x)^{3/2} (5 x+3)^{3/2}}{1920}-\frac {30371 (1-2 x)^{3/2} \sqrt {5 x+3}}{5120}+\frac {334081 \sqrt {1-2 x} \sqrt {5 x+3}}{51200}+\frac {3674891 \sin ^{-1}\left (\sqrt {\frac {2}{11}} \sqrt {5 x+3}\right )}{51200 \sqrt {10}} \]

[Out]

-2761/1920*(1-2*x)^(3/2)*(3+5*x)^(3/2)-251/800*(1-2*x)^(3/2)*(3+5*x)^(5/2)-3/50*(1-2*x)^(3/2)*(3+5*x)^(7/2)+36
74891/512000*arcsin(1/11*22^(1/2)*(3+5*x)^(1/2))*10^(1/2)-30371/5120*(1-2*x)^(3/2)*(3+5*x)^(1/2)+334081/51200*
(1-2*x)^(1/2)*(3+5*x)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 138, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 4, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {80, 50, 54, 216} \[ -\frac {3}{50} (1-2 x)^{3/2} (5 x+3)^{7/2}-\frac {251}{800} (1-2 x)^{3/2} (5 x+3)^{5/2}-\frac {2761 (1-2 x)^{3/2} (5 x+3)^{3/2}}{1920}-\frac {30371 (1-2 x)^{3/2} \sqrt {5 x+3}}{5120}+\frac {334081 \sqrt {1-2 x} \sqrt {5 x+3}}{51200}+\frac {3674891 \sin ^{-1}\left (\sqrt {\frac {2}{11}} \sqrt {5 x+3}\right )}{51200 \sqrt {10}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[1 - 2*x]*(2 + 3*x)*(3 + 5*x)^(5/2),x]

[Out]

(334081*Sqrt[1 - 2*x]*Sqrt[3 + 5*x])/51200 - (30371*(1 - 2*x)^(3/2)*Sqrt[3 + 5*x])/5120 - (2761*(1 - 2*x)^(3/2
)*(3 + 5*x)^(3/2))/1920 - (251*(1 - 2*x)^(3/2)*(3 + 5*x)^(5/2))/800 - (3*(1 - 2*x)^(3/2)*(3 + 5*x)^(7/2))/50 +
 (3674891*ArcSin[Sqrt[2/11]*Sqrt[3 + 5*x]])/(51200*Sqrt[10])

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 54

Int[1/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_.) + (d_.)*(x_)]), x_Symbol] :> Dist[2/Sqrt[b], Subst[Int[1/Sqrt[b*c -
 a*d + d*x^2], x], x, Sqrt[a + b*x]], x] /; FreeQ[{a, b, c, d}, x] && GtQ[b*c - a*d, 0] && GtQ[b, 0]

Rule 80

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(c + d*x)
^(n + 1)*(e + f*x)^(p + 1))/(d*f*(n + p + 2)), x] + Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(
d*f*(n + p + 2)), Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2,
0]

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rubi steps

\begin {align*} \int \sqrt {1-2 x} (2+3 x) (3+5 x)^{5/2} \, dx &=-\frac {3}{50} (1-2 x)^{3/2} (3+5 x)^{7/2}+\frac {251}{100} \int \sqrt {1-2 x} (3+5 x)^{5/2} \, dx\\ &=-\frac {251}{800} (1-2 x)^{3/2} (3+5 x)^{5/2}-\frac {3}{50} (1-2 x)^{3/2} (3+5 x)^{7/2}+\frac {2761}{320} \int \sqrt {1-2 x} (3+5 x)^{3/2} \, dx\\ &=-\frac {2761 (1-2 x)^{3/2} (3+5 x)^{3/2}}{1920}-\frac {251}{800} (1-2 x)^{3/2} (3+5 x)^{5/2}-\frac {3}{50} (1-2 x)^{3/2} (3+5 x)^{7/2}+\frac {30371 \int \sqrt {1-2 x} \sqrt {3+5 x} \, dx}{1280}\\ &=-\frac {30371 (1-2 x)^{3/2} \sqrt {3+5 x}}{5120}-\frac {2761 (1-2 x)^{3/2} (3+5 x)^{3/2}}{1920}-\frac {251}{800} (1-2 x)^{3/2} (3+5 x)^{5/2}-\frac {3}{50} (1-2 x)^{3/2} (3+5 x)^{7/2}+\frac {334081 \int \frac {\sqrt {1-2 x}}{\sqrt {3+5 x}} \, dx}{10240}\\ &=\frac {334081 \sqrt {1-2 x} \sqrt {3+5 x}}{51200}-\frac {30371 (1-2 x)^{3/2} \sqrt {3+5 x}}{5120}-\frac {2761 (1-2 x)^{3/2} (3+5 x)^{3/2}}{1920}-\frac {251}{800} (1-2 x)^{3/2} (3+5 x)^{5/2}-\frac {3}{50} (1-2 x)^{3/2} (3+5 x)^{7/2}+\frac {3674891 \int \frac {1}{\sqrt {1-2 x} \sqrt {3+5 x}} \, dx}{102400}\\ &=\frac {334081 \sqrt {1-2 x} \sqrt {3+5 x}}{51200}-\frac {30371 (1-2 x)^{3/2} \sqrt {3+5 x}}{5120}-\frac {2761 (1-2 x)^{3/2} (3+5 x)^{3/2}}{1920}-\frac {251}{800} (1-2 x)^{3/2} (3+5 x)^{5/2}-\frac {3}{50} (1-2 x)^{3/2} (3+5 x)^{7/2}+\frac {3674891 \operatorname {Subst}\left (\int \frac {1}{\sqrt {11-2 x^2}} \, dx,x,\sqrt {3+5 x}\right )}{51200 \sqrt {5}}\\ &=\frac {334081 \sqrt {1-2 x} \sqrt {3+5 x}}{51200}-\frac {30371 (1-2 x)^{3/2} \sqrt {3+5 x}}{5120}-\frac {2761 (1-2 x)^{3/2} (3+5 x)^{3/2}}{1920}-\frac {251}{800} (1-2 x)^{3/2} (3+5 x)^{5/2}-\frac {3}{50} (1-2 x)^{3/2} (3+5 x)^{7/2}+\frac {3674891 \sin ^{-1}\left (\sqrt {\frac {2}{11}} \sqrt {3+5 x}\right )}{51200 \sqrt {10}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.09, size = 79, normalized size = 0.57 \[ \frac {11024673 \sqrt {20 x-10} \sinh ^{-1}\left (\sqrt {\frac {5}{11}} \sqrt {2 x-1}\right )-10 \sqrt {5 x+3} \left (4608000 x^5+8505600 x^4+3215680 x^3-2873560 x^2-3226514 x+1254087\right )}{1536000 \sqrt {1-2 x}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[1 - 2*x]*(2 + 3*x)*(3 + 5*x)^(5/2),x]

[Out]

(-10*Sqrt[3 + 5*x]*(1254087 - 3226514*x - 2873560*x^2 + 3215680*x^3 + 8505600*x^4 + 4608000*x^5) + 11024673*Sq
rt[-10 + 20*x]*ArcSinh[Sqrt[5/11]*Sqrt[-1 + 2*x]])/(1536000*Sqrt[1 - 2*x])

________________________________________________________________________________________

fricas [A]  time = 0.98, size = 77, normalized size = 0.56 \[ \frac {1}{153600} \, {\left (2304000 \, x^{4} + 5404800 \, x^{3} + 4310240 \, x^{2} + 718340 \, x - 1254087\right )} \sqrt {5 \, x + 3} \sqrt {-2 \, x + 1} - \frac {3674891}{1024000} \, \sqrt {10} \arctan \left (\frac {\sqrt {10} {\left (20 \, x + 1\right )} \sqrt {5 \, x + 3} \sqrt {-2 \, x + 1}}{20 \, {\left (10 \, x^{2} + x - 3\right )}}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)*(3+5*x)^(5/2)*(1-2*x)^(1/2),x, algorithm="fricas")

[Out]

1/153600*(2304000*x^4 + 5404800*x^3 + 4310240*x^2 + 718340*x - 1254087)*sqrt(5*x + 3)*sqrt(-2*x + 1) - 3674891
/1024000*sqrt(10)*arctan(1/20*sqrt(10)*(20*x + 1)*sqrt(5*x + 3)*sqrt(-2*x + 1)/(10*x^2 + x - 3))

________________________________________________________________________________________

giac [B]  time = 1.09, size = 275, normalized size = 1.99 \[ \frac {1}{2560000} \, \sqrt {5} {\left (2 \, {\left (4 \, {\left (8 \, {\left (12 \, {\left (80 \, x - 203\right )} {\left (5 \, x + 3\right )} + 19073\right )} {\left (5 \, x + 3\right )} - 506185\right )} {\left (5 \, x + 3\right )} + 4031895\right )} \sqrt {5 \, x + 3} \sqrt {-10 \, x + 5} + 10392195 \, \sqrt {2} \arcsin \left (\frac {1}{11} \, \sqrt {22} \sqrt {5 \, x + 3}\right )\right )} + \frac {37}{384000} \, \sqrt {5} {\left (2 \, {\left (4 \, {\left (8 \, {\left (60 \, x - 119\right )} {\left (5 \, x + 3\right )} + 6163\right )} {\left (5 \, x + 3\right )} - 66189\right )} \sqrt {5 \, x + 3} \sqrt {-10 \, x + 5} - 184305 \, \sqrt {2} \arcsin \left (\frac {1}{11} \, \sqrt {22} \sqrt {5 \, x + 3}\right )\right )} + \frac {57}{8000} \, \sqrt {5} {\left (2 \, {\left (4 \, {\left (40 \, x - 59\right )} {\left (5 \, x + 3\right )} + 1293\right )} \sqrt {5 \, x + 3} \sqrt {-10 \, x + 5} + 4785 \, \sqrt {2} \arcsin \left (\frac {1}{11} \, \sqrt {22} \sqrt {5 \, x + 3}\right )\right )} + \frac {351}{2000} \, \sqrt {5} {\left (2 \, {\left (20 \, x - 23\right )} \sqrt {5 \, x + 3} \sqrt {-10 \, x + 5} - 143 \, \sqrt {2} \arcsin \left (\frac {1}{11} \, \sqrt {22} \sqrt {5 \, x + 3}\right )\right )} + \frac {27}{25} \, \sqrt {5} {\left (11 \, \sqrt {2} \arcsin \left (\frac {1}{11} \, \sqrt {22} \sqrt {5 \, x + 3}\right ) + 2 \, \sqrt {5 \, x + 3} \sqrt {-10 \, x + 5}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)*(3+5*x)^(5/2)*(1-2*x)^(1/2),x, algorithm="giac")

[Out]

1/2560000*sqrt(5)*(2*(4*(8*(12*(80*x - 203)*(5*x + 3) + 19073)*(5*x + 3) - 506185)*(5*x + 3) + 4031895)*sqrt(5
*x + 3)*sqrt(-10*x + 5) + 10392195*sqrt(2)*arcsin(1/11*sqrt(22)*sqrt(5*x + 3))) + 37/384000*sqrt(5)*(2*(4*(8*(
60*x - 119)*(5*x + 3) + 6163)*(5*x + 3) - 66189)*sqrt(5*x + 3)*sqrt(-10*x + 5) - 184305*sqrt(2)*arcsin(1/11*sq
rt(22)*sqrt(5*x + 3))) + 57/8000*sqrt(5)*(2*(4*(40*x - 59)*(5*x + 3) + 1293)*sqrt(5*x + 3)*sqrt(-10*x + 5) + 4
785*sqrt(2)*arcsin(1/11*sqrt(22)*sqrt(5*x + 3))) + 351/2000*sqrt(5)*(2*(20*x - 23)*sqrt(5*x + 3)*sqrt(-10*x +
5) - 143*sqrt(2)*arcsin(1/11*sqrt(22)*sqrt(5*x + 3))) + 27/25*sqrt(5)*(11*sqrt(2)*arcsin(1/11*sqrt(22)*sqrt(5*
x + 3)) + 2*sqrt(5*x + 3)*sqrt(-10*x + 5))

________________________________________________________________________________________

maple [A]  time = 0.01, size = 121, normalized size = 0.88 \[ \frac {\sqrt {-2 x +1}\, \sqrt {5 x +3}\, \left (46080000 \sqrt {-10 x^{2}-x +3}\, x^{4}+108096000 \sqrt {-10 x^{2}-x +3}\, x^{3}+86204800 \sqrt {-10 x^{2}-x +3}\, x^{2}+14366800 \sqrt {-10 x^{2}-x +3}\, x +11024673 \sqrt {10}\, \arcsin \left (\frac {20 x}{11}+\frac {1}{11}\right )-25081740 \sqrt {-10 x^{2}-x +3}\right )}{3072000 \sqrt {-10 x^{2}-x +3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((3*x+2)*(5*x+3)^(5/2)*(-2*x+1)^(1/2),x)

[Out]

1/3072000*(-2*x+1)^(1/2)*(5*x+3)^(1/2)*(46080000*(-10*x^2-x+3)^(1/2)*x^4+108096000*(-10*x^2-x+3)^(1/2)*x^3+862
04800*(-10*x^2-x+3)^(1/2)*x^2+11024673*10^(1/2)*arcsin(20/11*x+1/11)+14366800*(-10*x^2-x+3)^(1/2)*x-25081740*(
-10*x^2-x+3)^(1/2))/(-10*x^2-x+3)^(1/2)

________________________________________________________________________________________

maxima [A]  time = 1.13, size = 87, normalized size = 0.63 \[ -\frac {3}{2} \, {\left (-10 \, x^{2} - x + 3\right )}^{\frac {3}{2}} x^{2} - \frac {539}{160} \, {\left (-10 \, x^{2} - x + 3\right )}^{\frac {3}{2}} x - \frac {1121}{384} \, {\left (-10 \, x^{2} - x + 3\right )}^{\frac {3}{2}} + \frac {30371}{2560} \, \sqrt {-10 \, x^{2} - x + 3} x - \frac {3674891}{1024000} \, \sqrt {10} \arcsin \left (-\frac {20}{11} \, x - \frac {1}{11}\right ) + \frac {30371}{51200} \, \sqrt {-10 \, x^{2} - x + 3} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)*(3+5*x)^(5/2)*(1-2*x)^(1/2),x, algorithm="maxima")

[Out]

-3/2*(-10*x^2 - x + 3)^(3/2)*x^2 - 539/160*(-10*x^2 - x + 3)^(3/2)*x - 1121/384*(-10*x^2 - x + 3)^(3/2) + 3037
1/2560*sqrt(-10*x^2 - x + 3)*x - 3674891/1024000*sqrt(10)*arcsin(-20/11*x - 1/11) + 30371/51200*sqrt(-10*x^2 -
 x + 3)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \sqrt {1-2\,x}\,\left (3\,x+2\right )\,{\left (5\,x+3\right )}^{5/2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1 - 2*x)^(1/2)*(3*x + 2)*(5*x + 3)^(5/2),x)

[Out]

int((1 - 2*x)^(1/2)*(3*x + 2)*(5*x + 3)^(5/2), x)

________________________________________________________________________________________

sympy [A]  time = 73.28, size = 488, normalized size = 3.54 \[ - \frac {847 \sqrt {2} \left (\begin {cases} \frac {121 \sqrt {5} \left (- \frac {\sqrt {5} \sqrt {1 - 2 x} \sqrt {10 x + 6} \left (20 x + 1\right )}{121} + \operatorname {asin}{\left (\frac {\sqrt {55} \sqrt {1 - 2 x}}{11} \right )}\right )}{200} & \text {for}\: x \leq \frac {1}{2} \wedge x > - \frac {3}{5} \end {cases}\right )}{16} + \frac {1133 \sqrt {2} \left (\begin {cases} \frac {1331 \sqrt {5} \left (- \frac {5 \sqrt {5} \left (1 - 2 x\right )^{\frac {3}{2}} \left (10 x + 6\right )^{\frac {3}{2}}}{7986} - \frac {\sqrt {5} \sqrt {1 - 2 x} \sqrt {10 x + 6} \left (20 x + 1\right )}{1936} + \frac {\operatorname {asin}{\left (\frac {\sqrt {55} \sqrt {1 - 2 x}}{11} \right )}}{16}\right )}{125} & \text {for}\: x \leq \frac {1}{2} \wedge x > - \frac {3}{5} \end {cases}\right )}{16} - \frac {505 \sqrt {2} \left (\begin {cases} \frac {14641 \sqrt {5} \left (- \frac {5 \sqrt {5} \left (1 - 2 x\right )^{\frac {3}{2}} \left (10 x + 6\right )^{\frac {3}{2}}}{7986} - \frac {\sqrt {5} \sqrt {1 - 2 x} \sqrt {10 x + 6} \left (20 x + 1\right )}{3872} - \frac {\sqrt {5} \sqrt {1 - 2 x} \sqrt {10 x + 6} \left (12100 x - 2000 \left (1 - 2 x\right )^{3} + 6600 \left (1 - 2 x\right )^{2} - 4719\right )}{1874048} + \frac {5 \operatorname {asin}{\left (\frac {\sqrt {55} \sqrt {1 - 2 x}}{11} \right )}}{128}\right )}{625} & \text {for}\: x \leq \frac {1}{2} \wedge x > - \frac {3}{5} \end {cases}\right )}{16} + \frac {75 \sqrt {2} \left (\begin {cases} \frac {161051 \sqrt {5} \left (\frac {5 \sqrt {5} \left (1 - 2 x\right )^{\frac {5}{2}} \left (10 x + 6\right )^{\frac {5}{2}}}{322102} - \frac {5 \sqrt {5} \left (1 - 2 x\right )^{\frac {3}{2}} \left (10 x + 6\right )^{\frac {3}{2}}}{7986} - \frac {\sqrt {5} \sqrt {1 - 2 x} \sqrt {10 x + 6} \left (20 x + 1\right )}{7744} - \frac {3 \sqrt {5} \sqrt {1 - 2 x} \sqrt {10 x + 6} \left (12100 x - 2000 \left (1 - 2 x\right )^{3} + 6600 \left (1 - 2 x\right )^{2} - 4719\right )}{3748096} + \frac {7 \operatorname {asin}{\left (\frac {\sqrt {55} \sqrt {1 - 2 x}}{11} \right )}}{256}\right )}{3125} & \text {for}\: x \leq \frac {1}{2} \wedge x > - \frac {3}{5} \end {cases}\right )}{16} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)*(3+5*x)**(5/2)*(1-2*x)**(1/2),x)

[Out]

-847*sqrt(2)*Piecewise((121*sqrt(5)*(-sqrt(5)*sqrt(1 - 2*x)*sqrt(10*x + 6)*(20*x + 1)/121 + asin(sqrt(55)*sqrt
(1 - 2*x)/11))/200, (x <= 1/2) & (x > -3/5)))/16 + 1133*sqrt(2)*Piecewise((1331*sqrt(5)*(-5*sqrt(5)*(1 - 2*x)*
*(3/2)*(10*x + 6)**(3/2)/7986 - sqrt(5)*sqrt(1 - 2*x)*sqrt(10*x + 6)*(20*x + 1)/1936 + asin(sqrt(55)*sqrt(1 -
2*x)/11)/16)/125, (x <= 1/2) & (x > -3/5)))/16 - 505*sqrt(2)*Piecewise((14641*sqrt(5)*(-5*sqrt(5)*(1 - 2*x)**(
3/2)*(10*x + 6)**(3/2)/7986 - sqrt(5)*sqrt(1 - 2*x)*sqrt(10*x + 6)*(20*x + 1)/3872 - sqrt(5)*sqrt(1 - 2*x)*sqr
t(10*x + 6)*(12100*x - 2000*(1 - 2*x)**3 + 6600*(1 - 2*x)**2 - 4719)/1874048 + 5*asin(sqrt(55)*sqrt(1 - 2*x)/1
1)/128)/625, (x <= 1/2) & (x > -3/5)))/16 + 75*sqrt(2)*Piecewise((161051*sqrt(5)*(5*sqrt(5)*(1 - 2*x)**(5/2)*(
10*x + 6)**(5/2)/322102 - 5*sqrt(5)*(1 - 2*x)**(3/2)*(10*x + 6)**(3/2)/7986 - sqrt(5)*sqrt(1 - 2*x)*sqrt(10*x
+ 6)*(20*x + 1)/7744 - 3*sqrt(5)*sqrt(1 - 2*x)*sqrt(10*x + 6)*(12100*x - 2000*(1 - 2*x)**3 + 6600*(1 - 2*x)**2
 - 4719)/3748096 + 7*asin(sqrt(55)*sqrt(1 - 2*x)/11)/256)/3125, (x <= 1/2) & (x > -3/5)))/16

________________________________________________________________________________________